Kinetic competition during the transcription cycle results in stochastic RNA processing
نویسندگان
چکیده
Synthesis of mRNA in eukaryotes involves the coordinated action of many enzymatic processes, including initiation, elongation, splicing, and cleavage. Kinetic competition between these processes has been proposed to determine RNA fate, yet such coupling has never been observed in vivo on single transcripts. In this study, we use dual-color single-molecule RNA imaging in living human cells to construct a complete kinetic profile of transcription and splicing of the β-globin gene. We find that kinetic competition results in multiple competing pathways for pre-mRNA splicing. Splicing of the terminal intron occurs stochastically both before and after transcript release, indicating there is not a strict quality control checkpoint. The majority of pre-mRNAs are spliced after release, while diffusing away from the site of transcription. A single missense point mutation (S34F) in the essential splicing factor U2AF1 which occurs in human cancers perturbs this kinetic balance and defers splicing to occur entirely post-release.
منابع مشابه
MicroRNA biology in fungi
RNA processing is essential factor for synthesis of functional and structural proteins in eukaryote cells. In eukaryote organisms it will be initiated with transcription of DNA in nucleolus and terminated to mRNA translation in cytoplasm, finally mRNA degraded. Protein synthesis followed as different steps, includes 5' capping, poly adenylating, processing and transferring from nucleolus to cyt...
متن کاملمروری بر فرآیندهای وابسته به بیولوژی MicroRNA قارچها
RNA processing is essential factor for synthesis of functional and structural proteins in eukaryote cells. In eukaryote organisms it will be initiated with transcription of DNA in nucleolus and terminated to mRNA translation in cytoplasm, finally mRNA degraded. Protein synthesis followed as different steps, includes 5' capping, poly adenylating, processing and transferring from nucleolus to cyt...
متن کاملStochastic Competition between Mechanistically Independent Slippage and Death Pathways Determines Cell Fate during Mitotic Arrest
Variability in cell-to-cell behavior within clonal populations can be attributed to the inherent stochasticity of biochemical reactions. Most single-cell studies have examined variation in behavior due to randomness in gene transcription. Here we investigate the mechanism of cell fate choice and the origin of cell-to-cell variation during mitotic arrest, when transcription is silenced. Prolonge...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014